MassChroQ - Mass Chromatogram Quantification Logiciel de quantification par spectrométrie de masse

Edlira Nano Plateforme d'Analyse Protéomique de Paris Sud-Ouest

Rencontres bioinformaticiens et statisticiens de l'INRA 24 Mars 2011

Plan

- Problématique
 - Contexte
 - Besoins
 - Pourquoi développer MassChroQ?
- MassChroQ version 1.0
 - Historique
 - Fonctionnement de MassChroQ
 - Peptides et protéines identifiés
 - Détection et quantification
 - Groupes et alignement
 - masschrogML
- Applications et développement
 - Applications
 - Développement
 - Pour conclure

En protéomique :

 Besoin d'identifier et de quantifier les protéines et les peptides contenus dans les échantillons.

- Pour ceci on utilise la spectrométrie de masse (MS):
 technique physique d'analyse permettant de mesurer le rapport masse sur charge des molécules d'un composé.
- Mais aussi la chromatographie liquide (LC): technique chimique d'analyse permettant de séparer les molécules d'un composé.
- Ces deux techniques ont une utilité à la fois qualitative (identification de molécules) et quantitative (intensité de présence).
- L'utilisation de la MS en couple avec une phase préalable de LC (LC-MS) permet d'identifier et de quantifier finement les peptides et les protéines d'un composé.

En protéomique :

• Besoin d'identifier et de quantifier les protéines et les peptides contenus dans les échantillons.

- Pour ceci on utilise la spectrométrie de masse (MS): technique physique d'analyse permettant de mesurer le rapport masse sur charge des molécules d'un composé.
- Mais aussi la chromatographie liquide (LC): technique chimique d'analyse permettant de séparer les molécules d'un composé.
- Ces deux techniques ont une utilité à la fois qualitative (identification de molécules) et quantitative (intensité de présence).
- L'utilisation de la MS en couple avec une phase préalable de LC (LC-MS) permet d'identifier et de quantifier finement les peptides et les protéines d'un composé.

En protéomique :

 Besoin d'identifier et de quantifier les protéines et les peptides contenus dans les échantillons.

- Pour ceci on utilise la spectrométrie de masse (MS): technique physique d'analyse permettant de mesurer le rapport masse sur charge des molécules d'un composé.
- Mais aussi la chromatographie liquide (LC): technique chimique d'analyse permettant de séparer les molécules d'un composé.
- Ces deux techniques ont une utilité à la fois qualitative (identification de molécules) et quantitative (intensité de présence).
- L'utilisation de la MS en couple avec une phase préalable de LC (LC-MS) permet d'identifier et de quantifier finement les peptides et les protéines d'un composé.

En protéomique :

• Besoin d'identifier et de quantifier les protéines et les peptides contenus dans les échantillons.

- Pour ceci on utilise la spectrométrie de masse (MS): technique physique d'analyse permettant de mesurer le rapport masse sur charge des molécules d'un composé.
- Mais aussi la chromatographie liquide (LC): technique chimique d'analyse permettant de séparer les molécules d'un composé.
- Ces deux techniques ont une utilité à la fois qualitative (identification de molécules) et quantitative (intensité de présence).
- L'utilisation de la MS en couple avec une phase préalable de LC (LC-MS) permet d'identifier et de quantifier finement les peptides et les protéines d'un composé.

En protéomique :

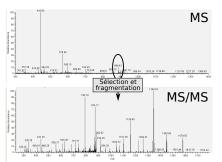
 Besoin d'identifier et de quantifier les protéines et les peptides contenus dans les échantillons.

- Pour ceci on utilise la spectrométrie de masse (MS): technique physique d'analyse permettant de mesurer le rapport masse sur charge des molécules d'un composé.
- Mais aussi la chromatographie liquide (LC): technique chimique d'analyse permettant de séparer les molécules d'un composé.
- Ces deux techniques ont une utilité à la fois qualitative (identification de molécules) et quantitative (intensité de présence).
- L'utilisation de la MS en couple avec une phase préalable de LC (LC-MS) permet d'identifier et de quantifier finement les peptides et les protéines d'un composé.

LC-MS/MS

 MS: séparation des peptides en fonction de leur rapport masse/charge
 ⇒ spectres de masse (intensité en fonction de masse/charge).

- MS/MS : sélection de peptides au cours de la MS et fragmentation
 ⇒ permet leur identification.
- LC : séparation des peptides au cours du temps ⇒ chromatogrammes (intensité en fonction du temps).
- LC-MS/MS ⇒ spectres MS plus pour chaque peptide sélectionné en MS/MS des chromatogrammes.

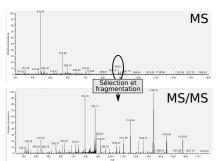


LC-MS/MS

 MS: séparation des peptides en fonction de leur rapport masse/charge

spectres de masse (intensité en fonction de masse/charge).

- MS/MS : sélection de peptides au cours de la MS et fragmentation
 ⇒ permet leur identification.
- LC: séparation des peptides au cours du temps ⇒ chromatogrammes (intensité en fonction du temps).
- LC-MS/MS ⇒ spectres MS plus pour chaque peptide sélectionné en MS/MS des chromatogrammes.

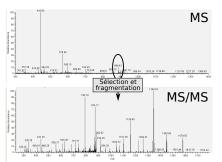


LC-MS/MS

 MS: séparation des peptides en fonction de leur rapport masse/charge

spectres de masse (intensité en fonction de masse/charge).

- MS/MS : sélection de peptides au cours de la MS et fragmentation
 ⇒ permet leur identification.
- LC: séparation des peptides au cours du temps ⇒ chromatogrammes (intensité en fonction du temps).
- LC-MS/MS ⇒ spectres MS plus pour chaque peptide sélectionné en MS/MS des chromatogrammes.



LC-MS/MS

 MS: séparation des peptides en fonction de leur rapport masse/charge

spectres de masse (intensité en fonction de masse/charge).

- MS/MS : sélection de peptides au cours de la MS et fragmentation
 ⇒ permet leur identification.
- LC: séparation des peptides au cours du temps ⇒ chromatogrammes (intensité en fonction du temps).
- LC-MS/MS ⇒ spectres MS plus pour chaque peptide sélectionné en MS/MS des chromatogrammes.

Problématique Besoins

Problématique

But

Associer à nos peptides identifiés une valeur quantitative déterminée en MS.

Contraintes

- Développement continuel des méthodes de quantification par spectrométrie de masse.
- Augmentation significative de la quantité et de la complexité des données produites.
- Indispensable de disposer d'outils informatiques pour analyser automatiquement les données afin d'en permettre l'exploitation.

Problématique Besoins

Problématique

But

Associer à nos peptides identifiés une valeur quantitative déterminée en MS.

Contraintes

- Développement continuel des méthodes de quantification par spectrométrie de masse.
- Augmentation significative de la quantité et de la complexité des données produites.
- Indispensable de disposer d'outils informatiques pour analyser automatiquement les données afin d'en permettre l'exploitation.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

De nombreux logiciels sont disponibles, mais présentent :

des lacunes biologiques :

- Spécifiques au matériel utilisé : spectromètres de faible résolution (LR) ou de haute résolution (HR).
- Spécifiques au type de données quantifiées : avec ou sans marquage isotopique.
- Peu/pas de prise en compte du dispositif expérimental (par exemple pré-fractionnements).

- Peu/pas paramétrables.
- Dépendants de la plateforme informatique : du système d'exploitation, de l'interface graphique ou de formats de données fermés non transparents.
- Peu/pas intégrables dans des pipelines.

- Quantifier des données HR aussi bien que LR.
- Quantifier des données sans marquage aussi bien qu'avec marquage isotopique.
- Gérer de grandes quantités de données rapidement et automatiquement.
- Être aussi indépendants que possible des dispositifs expérimentaux tout en prenant en compte leurs spécificités.
- Paramétrabilité et traçabilité.

- Quantifier des données HR aussi bien que LR.
- Quantifier des données sans marquage aussi bien qu'avec marquage isotopique.
- Gérer de grandes quantités de données rapidement et automatiquement.
- Être aussi indépendants que possible des dispositifs expérimentaux tout en prenant en compte leurs spécificités.
- Paramétrabilité et traçabilité.

- Quantifier des données HR aussi bien que LR.
- Quantifier des données sans marquage aussi bien qu'avec marquage isotopique.
- Gérer de grandes quantités de données rapidement et automatiquement.
- Être aussi indépendants que possible des dispositifs expérimentaux tout en prenant en compte leurs spécificités.
- Paramétrabilité et tracabilité.

- Quantifier des données HR aussi bien que LR.
- Quantifier des données sans marquage aussi bien qu'avec marquage isotopique.
- Gérer de grandes quantités de données rapidement et automatiquement.
- Être aussi indépendants que possible des dispositifs expérimentaux tout en prenant en compte leurs spécificités.
- Paramétrabilité et tracabilité.

- Quantifier des données HR aussi bien que LR.
- Quantifier des données sans marquage aussi bien qu'avec marquage isotopique.
- Gérer de grandes quantités de données rapidement et automatiquement.
- Être aussi indépendants que possible des dispositifs expérimentaux tout en prenant en compte leurs spécificités.
- Paramétrabilité et traçabilité.

2006

Premiers tests de quantification sans marquage. Extraction des valeurs quantitatives manuellement.

2007 - 2008

Échantillons plus complexes. Automatisation par des scripts Perl (B. Valot).

2009

Besoin de rapidité et d'ajout de fonctionnalités. Traduction des scripts Perl en C++ : QuantiMsCpp (O. Langella et B.Valot).

2010

2006

Premiers tests de quantification sans marquage. Extraction des valeurs quantitatives manuellement.

2007 - 2008

Échantillons plus complexes. Automatisation par des scripts Perl (B. Valot).

2009

Besoin de rapidité et d'ajout de fonctionnalités. Traduction des scripts Perl en C++ : QuantiMsCpp (O. Langella et B.Valot).

2010

2006

Premiers tests de quantification sans marquage. Extraction des valeurs quantitatives manuellement.

2007 - 2008

Échantillons plus complexes. Automatisation par des scripts Perl (B. Valot).

2009

Besoin de rapidité et d'ajout de fonctionnalités. Traduction des scripts Perl en C++ : QuantiMsCpp (O. Langella et B.Valot).

2010

2006

Premiers tests de quantification sans marquage. Extraction des valeurs quantitatives manuellement.

2007 - 2008

Échantillons plus complexes. Automatisation par des scripts Perl (B. Valot).

2009

Besoin de rapidité et d'ajout de fonctionnalités. Traduction des scripts Perl en C++ : QuantiMsCpp (O. Langella et B.Valot).

2010

Fonctionnalités de MassChroQ

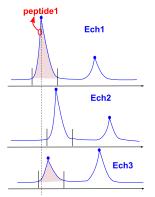
- Parsing des échantillons LC-MS/MS sous formats ouverts standards: mzXML ou mzML.
- Définition des entités à quantifier : peptides identifiés, isotopes ou liste de masses.
- Alignement des échantillons LC-MS/MS semblables si nécessaire.
- Traitement du signal : filtrage du bruit de fond, du bruit de la ligne de base, élimination de spikes.
- Détection puis quantification des entités définies.
- Export des résultats sous divers formats ouverts (tsv, gnumeric, xml ou xhtmltable) prêts à être exploités statistiquement.

- Les peptides présents dans les échantillons sont identifiés via des logiciels d'identification (X!Tandem, Mascot, ...).
- Les résultats d'identification sont automatiquement intégrables dans MassChroQ de deux façons :
 - directement en utilisant notre X! Tandem pipeline;
 - à partir de fichiers tsv/csv (produits par la plupart des logiciels d'identification).

- Les peptides présents dans les échantillons sont identifiés via des logiciels d'identification (X!Tandem, Mascot, ...).
- Les résultats d'identification sont automatiquement intégrables dans MassChroQ de deux façons :
 - directement en utilisant notre X! Tandem pipeline;
 - à partir de fichiers tsv/csv (produits par la plupart des logiciels d'identification).

- Les peptides présents dans les échantillons sont identifiés via des logiciels d'identification (X!Tandem, Mascot, ...).
- Les résultats d'identification sont automatiquement intégrables dans MassChroQ de deux façons :
 - directement en utilisant notre X! Tandem pipeline;
 - à partir de fichiers tsv/csv (produits par la plupart des logiciels d'identification).

- Les peptides présents dans les échantillons sont identifiés via des logiciels d'identification (X!Tandem, Mascot, ...).
- Les résultats d'identification sont automatiquement intégrables dans MassChroQ de deux façons :
 - directement en utilisant notre X!Tandem pipeline;
 - à partir de fichiers tsv/csv (produits par la plupart des logiciels d'identification).



Détection et quantification des pics sur les XICs

eXtracted Ion Chromatogram (XIC)

- A partir des données MS, on extrait les intensités des m/z d'intérêt au cours du temps chromatographique.
- Filtrage des XICs.

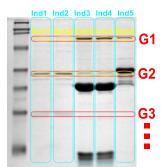
- Détection des pics d'intensité.
- Calcul de l'aire sous les pics
 ⇒ valeur quantitative.
- La LC génère des décalages de temps de rétention : besoin d'alignement des runs LC-MS pour éviter les biais expérimentaux.

Groupes de runs

L'utilisateur regroupe des runs LC-MS techniquement similaires pour pouvoir les traiter ensemble et de façon spécifique.

Ex : pré-fractionnement SDS PAGE des échantillons Seuls les runs de la même bande doivent être alignés entre eux.

- On aligne ensemble les runs d'un même groupe.
- Accès à l'intensité d'un peptide même s'il n'a pas été identifié dans un run.
- Chaque groupe peut avoir des paramètres d'alignement différents.

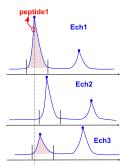


Groupes de runs

L'utilisateur regroupe des runs LC-MS techniquement similaires pour pouvoir les traiter ensemble et de façon spécifique.

Ex : pré-fractionnement SDS PAGE des échantillons Seuls les runs de la même bande doivent être alignés entre eux.

- On aligne ensemble les runs d'un même groupe.
- Accès à l'intensité d'un peptide même s'il n'a pas été identifié dans
- Chaque groupe peut avoir des paramètres d'alignement différents.

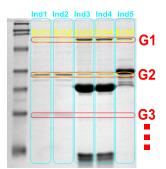


Groupes de runs

L'utilisateur regroupe des runs LC-MS techniquement similaires pour pouvoir les traiter ensemble et de façon spécifique.

Ex : pré-fractionnement SDS PAGE des échantillons Seuls les runs de la même bande doivent être alignés entre eux.

- On aligne ensemble les runs d'un même groupe.
- Accès à l'intensité d'un peptide même s'il n'a pas été identifié dans un run.
- Chaque groupe peut avoir des paramètres d'alignement différents.

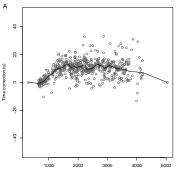


Groupes de runs

L'utilisateur regroupe des runs LC-MS techniquement similaires pour pouvoir les traiter ensemble et de façon spécifique.

Ex : pré-fractionnement SDS PAGE des échantillons Seuls les runs de la même bande doivent être alignés entre eux.

- On aligne ensemble les runs d'un même groupe.
- Accès à l'intensité d'un peptide même s'il n'a pas été identifié dans un run.
- Chaque groupe peut avoir des paramètres d'alignement différents.


Deux méthodes d'alignements :

MS Méthodes dérivées des analyses de gel 2D ou de traces chromatographiques

⇒ intégration du logiciel open-source OBI-Warp

MS/MS Méthodes utilisant les résultats d'identification

⇒ algorithme développé en interne

Exemple d'alignement

masschroqML

En entrée

Format XML du fichier d'entrée de MassChroQ. On y définit :

- toutes les instructions d'analyse souhaitées;
- les différents paramètres d'alignement et de détection des pics;
- les formats des résultats et les traces souhaitées.

En sortie

- Les résultats contiennent une valeur quantitative associée à chaque peptide, dans chaque échantillon.
- Les formats résultats disponibles sont : tsv, gnumeric, et xhtmltable (pour exploitation directe) et masschroqML (pour intégration dans des bases de données telle que PROTICOLD).

masschroqML

En entrée

Format XML du fichier d'entrée de MassChroQ. On y définit :

- toutes les instructions d'analyse souhaitées;
- les différents paramètres d'alignement et de détection des pics;
- les formats des résultats et les traces souhaitées.

En sortie

- Les résultats contiennent une valeur quantitative associée à chaque peptide, dans chaque échantillon.
- Les formats résultats disponibles sont : tsv, gnumeric, et xhtmltable (pour exploitation directe) et masschroqML (pour intégration dans des bases de données telle que PROTICOLD).

Résultats

Publication soumise

Analyse LC-MS/MS en HR et LR d'un protéome complexe avec injection croissante de protéine BSA (6 répétitions techniques HR et 6 LR). A montré :

- la reproductibilité de la quantification et de la détection (CV inférieurs à 1.4% en LR et à 1.3% en HR),
- des données quantitatives HR et LR très similaires,
- une amélioration significative des résultats quantitatifs apportée par l'alignement.

Résultats

Projet HeterosYeast : Mélisande Blein

- Traité :
 - Analyse de 17 souches de levure de S. Cerevisiae et S. Uvarum: étude protéomique de la fermentation chez les hybrides.
 - Total de 52 échantillons analysés en LC-MS/MS HR.
 - 250 Go de fichiers mzXML traités par MassChroQ.
 - Temps d'analyse MassChroQ : 30 minutes.
 - Peptides quantifiés : \simeq 7000.
- À venir :
 - Analyse sur des hybrides de 12 souches.
 - 450 échantillons en LC-MS/MS HR.

Résultats

Projet Dromadair: Ludovic Bonhomme

- Analyse de 40 injections d'une même lignée de mais chacune pré-fractionnée en 10 par SCX-IMAC selon 10 régimes hydriques différents pour une étude de la cinétique de phosphorylation des protéines durant un laps de temps de quelques minutes.
- Marquage isotopique par dimethylation.
- Total de 400 échantillons analysés en LC-MS³ LR.
- 450 Go de fichiers mzXML traités.
- Temps d'analyse MassChroQ : \simeq 48h.
- Peptides phosphorylés quantifiés : \simeq 4000.

- MassChroQ est écrit en C++ et utilise la bibliothèque Qt
 - gestion fine de la mémoire, modularité et portabilité.
- C'est un logiciel indépendant en ligne de commande et aussi une librairie directement intégrable dans des pipelines protéomiques connues comme la TPP ou la TOPP.
- Conçu pour une intégration immédiate de nouvelles fonctionnalités ou de librairies externes :
 - intégration de la librairie externe d'alignement OBI-Warp et implémentation de l'algorithme interne d'alignement MS/MS

- MassChroQ est écrit en C++ et utilise la bibliothèque Qt
 - gestion fine de la mémoire, modularité et portabilité.
- C'est un logiciel indépendant en ligne de commande et aussi une librairie directement intégrable dans des pipelines protéomiques connues comme la TPP ou la TOPP.
- Conçu pour une intégration immédiate de nouvelles fonctionnalités ou de librairies externes :
 - intégration de la librairie externe d'alignement OBI-Warp et implémentation de l'algorithme interne d'alignement MS/MS

- MassChroQ est écrit en C++ et utilise la bibliothèque Qt
 - gestion fine de la mémoire, modularité et portabilité.
- C'est un logiciel indépendant en ligne de commande et aussi une librairie directement intégrable dans des pipelines protéomiques connues comme la TPP ou la TOPP.
- Conçu pour une intégration immédiate de nouvelles fonctionnalités ou de librairies externes :
 - intégration de la librairie externe d'alignement OBI-Warp et implémentation de l'algorithme interne d'alignement MS/MS

- MassChroQ est écrit en C++ et utilise la bibliothèque Qt
 - gestion fine de la mémoire, modularité et portabilité.
- C'est un logiciel indépendant en ligne de commande et aussi une librairie directement intégrable dans des pipelines protéomiques connues comme la TPP ou la TOPP.
- Conçu pour une intégration immédiate de nouvelles fonctionnalités ou de librairies externes :
 - intégration de la librairie externe d'alignement OBI-Warp et implémentation de l'algorithme interne d'alignement MS/MS.

- MassChroQ est écrit en C++ et utilise la bibliothèque Qt
 - gestion fine de la mémoire, modularité et portabilité.
- C'est un logiciel indépendant en ligne de commande et aussi une librairie directement intégrable dans des pipelines protéomiques connues comme la TPP ou la TOPP.
- Conçu pour une intégration immédiate de nouvelles fonctionnalités ou de librairies externes :
 - intégration de la librairie externe d'alignement OBI-Warp et implémentation de l'algorithme interne d'alignement MS/MS.

Ouverture

- MassChroQ et son code source seront (très prochainement) diffusés sous licence libre GPL version 3.
- Il est disponible pour Windows et Linux.
- Il utilise et produit uniquement des données en formats ouverts standards.

Transparence

- MassChroQ est entièrement paramétrable via un fichier d'entrée XML.
- Chaque étape de son traitement est entièrement traçable (alignement, XICs, filtrage, détection de pics).
- Une documentation complète, des exemples d'analyses courantes prêts à l'emploi, un dépôt subversion, une gestion de bugs et des forums utilisateur sont disponibles (SourceSup).

Ouverture

- MassChroQ et son code source seront (très prochainement) diffusés sous licence libre GPL version 3.
- Il est disponible pour Windows et Linux.
- Il utilise et produit uniquement des données en formats ouverts standards.

Transparence

- MassChroQ est entièrement paramétrable via un fichier d'entrée XML.
- Chaque étape de son traitement est entièrement traçable (alignement, XICs, filtrage, détection de pics).
- Une documentation complète, des exemples d'analyses courantes prêts à l'emploi, un dépôt subversion, une gestion de bugs et des forums utilisateur sont disponibles (SourceSup).

Futurs développements en 2011

- Gestion plus fine de la mémoire vive.
- Gestion des analyses SRM.
- Nouvelle version avec interface graphique complète.

Remerciements

- Olivier Langella : conception et réalisation du logiciel, modularité, ouverture et direction de mes travaux.
- Benoît Valot : création et conception du logiciel, premier utilisateur, premier dénicheur de bugs, éternel exigeant de fonctionnalités.
- L'équipe PAPPSO: Michel Zivy notre directeur et redoutable concepteur d'algorithmes; Mélisande Blein et Ludovic Bonhomme les premiers et si indispensables cobayes de MassChroQ.
- SourceSup: service de gestion de projets du Comité Réseau des Universités, pour l'hébérgement du dépôt subversion, du gestionnaire de bugs et des forums de MassChroQ ainsi que pour leur réactivité.

Liens

Page principale de MassChroQ

http://pappso.inra.fr/bioinfo/masschroq/

Page du logiciel sur SourceSup

http://sourcesup.cru.fr/projects/masschroq/

Auteurs de MassChroQ

O. Langella: olivier.langella@moulon.inra.fr

B. Valot: benoit.valot@moulon.inra.fr

E. Nano: edlira.nano@moulon.inra.fr

M. Zivy: michel.zivy@moulon.inra.fr.

Ce document est distribué sous licence Creative Commons CC-BY-NC-ND 2.0 France.

